14 research outputs found

    Are you haptic a bad day?

    No full text

    The development of a physics and constraint based haptic virtual assembly system

    Get PDF
    Purpose – This paper aims to report the development and key features of a novel virtual reality system for assembly planning and evaluation called Haptic Assembly and Manufacturing System (HAMS). The system is intended to be used as a tool for training, design analysis and path planning. Design/methodology/approach – The proposed systemuses the physics-basedmodelling (PBM) to performassemblies in virtual nvironments.Moreover, dynamic assembly constrains have been considered to reduce the degrees of freedom of virtual objects and enhance the virtual assembly performance. Findings – To evaluate the effectiveness and performance of HAMS, the assembly of various mechanical components has been carried out, and the results have shown that it can be effectively used to simulate, evaluate, plan and automatically formalise the assembly of complex models in a more natural and intuitive way. Research limitations/implications – The collision detection performance is the bottleneck in any virtual assembly system. New methods of collision shape representation and collision detection algorithms must be considered. Originality/value – HAMS introduces the use of dynamic assembly constraints to enhance the virtual assembly performance. HAMS also uses features not yet reported by similar systems in the literature. These features include: automatic or manual definition of assembly constraints within the virtual assembly system; the implementation of control panels and widgets to modify simulation parameters during running time to evaluate its influence on simulation performance; assembly data logging such as trajectories, forces and update rates for post-processing, further analysis or its presentation in the form of chronocyclegraphs to graphically analyse the assembly process

    On the Development of Virtual Reality Scenarios for Computer-Assisted Biomedical Applications

    No full text
    The modelling of virtual environments and scenarios is an important area of research for the development of new computer-assisted systems in the areas of engineering and medicine, particularly in the area of biomechanics and biomedical engineering. One of the main issues while designing a virtual environment is the level of realism, which depends on the computing capacity and the level of accuracy and usefulness of the generated data. Thus, the dilemma is between the aesthetic realism and the information utility. This paper proposes a methodology to develop low-cost and high-quality virtual environments and scenarios for computer-aided biomedical applications. The proposed methodology is based on the open-source software Blender and the Visualization Toolkit libraries (VTK). In order to demonstrate the usability of the proposed methodology, the design and development of a computer-assisted biomedical application is presented and analysed
    corecore